本文的“下注”是指游戏或合法投资,所有赌博都不值得参与。本文来自微信公众号:孤独大脑 (ID:lonelybrain),作者:老喻,头图来自:《赌神》剧照
一、三个故事
故事1:最后一口水
有个人在沙漠上迷路了,后来没有水,在救援人员赶来之前不幸离世。后来救援人员发现他随身携带的钢笔里还有墨水。有人说,假如他喝了墨水,没准儿能坚持到获救。
故事2:最后一层楼
这个故事大约是本世纪初我听到的。有个富豪,生意做得很大。后来遭遇挫折,亏光所有资产。绝望时突然想起自己在HK买过一层写字楼,一直没放在心上,这时候真成了东山再起的筹码——幸好忘了,不然可能连这层楼也亏掉了。
故事3:最后一笔财
和几个做投资的朋友吃饭。有位兄弟说起应该像当年犹太人那样,备一些应急的珠宝。一是如上世纪初地球混乱时能当买路钱,二是逃到生地后也需要重振旗鼓的本钱。
我提及以上三个故事,重点不在应急,而是想说:
任何时候,确保自己还有下注的能力,是一种极其重要的生存智慧。
这三个故事都揭示了一个核心的生存和成功原则:
无论你面对何种情况,都要确保自己保有下一步行动的能力,无论是在商业、投资还是生活中。
故事一中的人如果意识到自己的钢笔中的墨水,就可能能够继续生存下去,等待救援。
故事二中的富豪,在他的生意倒塌后,由于他之前在香港的一处写字楼,他有机会重新开始,再次积累财富。
故事三中的犹太人,他们储备了珠宝等贵重物品,使他们在最糟糕的情况下仍有生存的可能。
所有这些故事都强调了保持“下注”的能力的重要性:
1. 在投资中,这意味着你要保证自己有足够的资金和资源来应对市场的波动和不确定性;
2. 在生活中,这可能意味着你需要保持自己的身心健康,保持学习和进步,以便在面对困难和挑战时,你有能力和信心去应对。
二、“赌神”的第一公式
孤独大脑:说起下注,今天我们来聊凯利公式。据说这是赌神的“第一公式”......
ChatGPT:凯利公式是一个用来决定最优投注比例的公式,它帮助投资者和赌徒最大化长期的收益。
这个公式是由凯利在1956年提出的,他在贝尔实验室工作,试图找到一种有效的通信线路噪声管理策略。
然后他发现,他的理论可以应用于赌博和投资领域,帮助人们确定每次下注的最佳金额。
凯利公式如下:
f* = (bp - q) / b
这里:
f* 是应该下注的资金的比例;
b 是每次赌注的净收益率(赔率 - 1);
p 是获胜的概率;
q 是失去赌注的概率,也就是(1-p)。
这个公式基于一个假设,那就是你可以准确估计获胜的概率和每次赌注的潜在收益。如果你的预测是准确的,那么凯利公式可以告诉你应该把多少钱投入到每次下注中,以最大化长期的收益。
然而,值得注意的是,凯利公式的应用在实际情况中可能会非常复杂,因为:
1. 我们很难精确地预测获胜的概率和每次赌注的潜在收益。
2. 凯利公式可能会导致比较大的投注比例,如果你不能接受这种风险,那么你可能需要把下注比例降低一些。
孤独大脑:讲起凯利公式,我们必须要提一下香农和索普。
当年索普发现了在赌场玩儿二十一点战胜庄家的办法,但是,即使胜率占优,期望值为正,因为赌场的本金相对赌徒几乎是无限多,所以每次如何下注依然是个难题。
索普向贝尔实验室最聪明的香农求助,香农于是推荐了第二聪明的凯利提出的公式。
ChatGPT:这个故事很有趣。
索普是一个极其聪明的数学家,他是最早系统性地研究二十一点游戏策略的人。他发现了一种可以在长期内战胜赌场的策略,这就是现在被广泛使用的“基本策略”和“计数系统”。
然而,索普在确定每一局应下注多少时遇到了问题。他明白,即使他有优势,但如果他每次下注过多,那么他仍然有可能在短期内输掉所有的钱。他需要一种方法来平衡胜率和下注金额。
于是,他找到了香农求助。香农是信息论的创始人,他认识到索普的问题实际上是一个关于信息和噪声的问题,于是推荐了凯利公式给他。
使用凯利公式,索普可以确定每次下注的最佳比例,使他的长期收益最大化。
凯利公式基于的思想是,如果你的策略具有正的期望收益,那么你应该适度地增加投注,但又不能过度,以免风险太大。
这个故事是一个完美的例子,展示了数学、信息论和决策理论是如何在现实中发挥作用的。
三、凯利公式的推导
孤独大脑:请你从数学角度,讲一下凯利公式的原理、推导。
ChatGPT:凯利公式的基本思想是最大化长期投资的复利增长。它是在特定假设下推导出来的,主要用于确定在有正期望值的投资或下注中应投入的比例。
先说原理。
凯利公式的基本思想源自信息理论和概率理论。它的目标是找到一个投资策略,使得资本的长期复利增长率最大。这通常涉及到在风险和收益之间进行权衡。
以下是公式推导。在一个简单的赌博游戏中,假设:
每次赌博赢得的概率为p;
输的概率为q=1-p;
每次赢得的收益率为b(赔率);
每次输的收益率为-1(输掉的是你投入的资本)。
如果你决定每次赌博投入总资本的f比例,那么每次赌博后你的资本变为:
赢:(1+f*b);
输:(1-f)。
假设每次赌博是独立的,那么在n次赌博后,你的资本Cn为:
Cn = C0 * (1+f*b)^X * (1-f)^Y,
其中,X是你赢的次数,Y是你输的次数。
在长期来看(即n趋于无穷大),资本的期望对数增长率(即对数资本的期望增长率)是最重要的指标。在这个模型中,这个增长率g为:
g = E[ln(Cn/C0)]/n = pln(1+fb) + q*ln(1-f).
你的目标是找到一个f,使得g最大。这可以通过求解上面这个式子的最大值来实现。
使用微积分的方法,你会找到:
f* = (bp - q) / b,
其中f*是使得g最大的f值。
四、不确定情况下的复利
孤独大脑:在某种意义上,凯利公式是用来计算不确定情况下的复利回报的。
在确定性情况下,复利的计算很简单;但在现实世界里,投资者哪怕胜率占优,也是有输有赢的。如上计算,全面考虑了亏和赚对整体收益的影响。
ChatGPT:是的,你的理解是正确的。
凯利公式就是在处理这样的问题:在一个存在风险的环境中,你应该如何分配你的投资,以最大化你的长期复利回报。
在确定性的环境中,复利的计算是简单直接的。如果你知道你的投资回报率,你可以简单地将这个回报率应用于你的投资本金,然后持续复利,得到你的最终回报。
然而,在现实世界中,投资者面临的通常是一种风险环境,即使你的策略胜率占优,你也不能保证每一次投资都会赢。
这就是凯利公式的应用场景。
凯利公式告诉你在每一次投资中应该投入多少本金,这个数值是根据你的胜率和赔率计算出来的,以期最大化你的长期复利回报。
当你遵循凯利公式进行投资时,即使在一段时间内有输的投资,只要你的策略在长期中胜率占优,你的投资本金将会按照复利增长。
然而,需要注意的是,凯利公式并不能消除风险,它只是提供了一个理论上的最佳投资比例,以期望在长期中获得最大的复利回报。
在实际应用中,投资者可能需要考虑到其他的风险因素,比如市场的波动性,投资者的风险承受能力等,所以可能不会完全按照凯利公式的建议进行投资。
孤独大脑:确切说,凯利公式只适用于期望值为正的投资。
也就是说,这个公式只能帮助一个好的投资,而无法挽救一个差的投资。
确切说,凯利公式无法帮助一个赌徒。
ChatGPT:是的,凯利公式是在投资或下注的期望值为正的情况下才能提供最优策略的。
期望值是每次投资可能的收益与各自发生的概率的乘积之和。
如果一个投资的期望值为正,那就意味着在长期内,这个投资平均每次能带来正的收益。
反过来,如果一个投资的期望值为负,那就意味着在长期内,这个投资平均每次会带来损失。
凯利公式的目标是找到一个策略,使得你的资本的长期复利增长率最大。
如果一个投资的期望值为负,那么无论你投入多少资本,长期来看你的资本都会减少。
在这种情况下,凯利公式没有意义,因为没有任何策略能增加你的资本。
因此,凯利公式必须基于期望值为正的投资,否则,它无法提供有效的投资策略。
五、赔率和胜率的错觉
孤独大脑:一篇强调“高赔率投资”的文章里,举了一个“反面”例子。
按照凯利公式:
1. 一个10倍赔率的机会,如果只有10%的概率赢,最佳下注仓位只有1%;
2. 一个0.5倍赔率的机会(赚1亏2),如果有80%概率赢,最佳下注仓位可以到40%。
该文由此认为: 经典投资理论更倾向于进行高概率的投资,能够提高对概率的把握就是提高胜率。
按照(凯利公式)这套重概率(胜率)轻赔率的做法,想在投资实践中获得高收益是非常不容易的。
因为概率很难预估,并且由于投资并非扔骰子式的大规模重复,对结果无法验证。
问题来了,凯利公式真的“重胜率轻赔率”吗?
ChatGPT:凯利公式是基于投资的概率和赔率来确定最佳的投资仓位的,所以它并非是“重胜率轻赔率”或“重赔率轻胜率”,而是二者都要考虑。我们来具体计算一下你提供的两个例子:
1. 对于一个10倍赔率的投资机会,如果你赢的概率是10%,那么根据凯利公式:F* = p - q / b = 0.1 - 0.9 / 10 = 1%。
这就是说,如果你想最大化你的长期收益,那么你应该把你的1%的资金投入这个投资机会。
2. 对于一个0.5倍赔率的投资机会,如果你赢的概率是80%,那么根据凯利公式:F* = p - q / b = 0.8 - 0.2 / 0.5 = 40%。
这就是说,如果你想最大化你的长期收益,那么你应该把你的40%的资金投入这个投资机会。
以上两个例子清楚地表明,凯利公式并不是“重胜率轻赔率”,而是同时考虑了胜率和赔率来确定最佳的投资仓位。
孤独大脑:其实有个简单的办法。
为了让人们理解凯利公式计算的是最佳结果,我们假设上面的第一个例子里,下注比例分别调整为2%,10%,和20%。然后对比1%的最佳建议下注比例,看看最终整体回报分别是多少。
ChatGPT:我们分别算算看就知道了。
如果我们以1%的下注比例进行投资,每次投资成功,收益是初始金额的10%,失败则损失初始金额的1%。
假设有10000次独立投资机会,其中有10%的机会获胜(1000次),90%的机会失败(9000次)。
在这种情况下,最终的资金状况如下:
在如上四种情况下,按照凯利公式1%的下注比例将会得到最大的最终资金。
当你增加下注比例,尽管短期内可能看到更高的回报,但由于下注更多,每次失败时的损失也会更大,因此长期来看,最终的复利增长率将会降低。
孤独大脑:从直觉上看,似乎凯利公式偏好胜率高而赔率一般的投资,而对赔率高但胜率低的投资比较冷静。
ChatGPT:这是一个常见的误解,但实际上凯利公式并不偏爱胜率高的投资。
凯利公式的重点是找到最佳的下注比例,以最大化长期的复利增长。这个比例取决于两个因素:胜率和赔率。
在一个特定的赌局或投资中,赔率和胜率是相互关联的。较高的赔率通常意味着较低的胜率,反之亦然。凯利公式会考虑这两个因素,寻找一个平衡点,使得你的长期复利增长最大化。
实际上,如果赔率很高但胜率很低,凯利公式可能会建议你押注较小的比例,因为这样可以降低你因为连续失败而破产的风险。
相反,如果赔率较低但胜率较高,凯利公式可能会建议你押注较大的比例,因为你有较大的机会赢得这场赌局。
因此,凯利公式并不偏爱胜率高的投资,它只是试图在胜率和赔率之间找到最佳的平衡,以最大化你的长期复利增长。
孤独大脑:从人对下注比例的错觉看,人类在赌博的时候其实是有很大风险偏好的,这倒是很有趣。所以投资的时候谨慎一些总是好的。
六、“成长型”下注
孤独大脑:假如一个下注游戏是不断优化的过程,前半截是期望值为负,但不断下注会优化胜率,直至期望值为正。请问这类游戏如何使用凯利公式?
ChatGPT:对于这种情况,可以将整个游戏过程看作是两个阶段,并分别对这两个阶段应用凯利公式。
在第一阶段,期望值为负。在这个阶段,根据凯利公式,你应该减小你的投入,甚至可以选择不参与,以尽量减少损失。同时,你可以寻找改进策略的方法,比如学习新的技巧,获取更多的信息,以提高你赢的概率。
在第二阶段,你已经优化了你的策略,期望值变为正。此时,你可以根据凯利公式,计算出最优的投资比例,并据此进行下注。
这种策略假设你可以准确地估计每个阶段的期望值,以及你有足够的资源来经受第一阶段的损失。
在实际应用中,这可能是一种挑战,因此需要谨慎考虑是否有其他的风险管理策略,如止损、分散投资等。
孤独大脑:但第一个阶段不参与,就无法进入第二个阶段,请问该怎么办?
ChatGPT:这是一个复杂的问题,因为你的决策需要权衡短期的损失和长期的收益。在这种情况下,你可能需要做一些调整:
1. 分配一部分资金用于“学习”阶段。在期望值为负的初期阶段,你可以将这视为一种学习或优化的过程。你可以预先设定一个“学习预算”,并准备在这个阶段可能会有损失。这部分的资金应该是你愿意并能够承受损失的。
2. 逐步提高投资。当你的技能提升,胜率提高,期望值逐渐提高时,你可以逐渐增加你的投资,直到达到凯利公式推荐的最优投资比例。需要注意的是,你应该确保你的胜率确实有提升,并且期望值确实已经转正。
3. 不断审视和调整。在整个过程中,你应该不断审视自己的策略和结果,确保你正在朝着正确的方向进步。如果发现自己的策略不起作用,或者损失超过了你预设的“学习预算”,你应该停下来重新考虑你的策略。
总的来说,在面对期望值会发生变化的投资或下注时,使用凯利公式需要更加小心和灵活。
你需要准备好在学习和优化阶段面临一些损失,并适时地调整你的投资比例。
孤独大脑:我们这里讨论的“第一个阶段”,是不是属于精益创业的价值假设和价值验证阶段?
ChatGPT:你的观察非常有趣,确实可以将这个两阶段过程与精益创业的某些阶段相对应。
在精益创业中,初期阶段通常被分为价值假设和价值验证。
在价值假设阶段,创业者会基于对市场和用户需求的理解,制定一个商业模式或产品方案。
然后在价值验证阶段,通过构建最小可行产品(MVP)并在目标用户中测试,来验证这个假设是否正确。
如果将这个概念应用到你的问题中,第一阶段的期望值为负的游戏,可以看作是一个“价值假设”阶段。
你正在通过参与游戏,学习规则,试错,收集数据,以尝试找到一个有利可图的策略或技巧。
这个阶段可能会有一些损失,就像创业初期可能需要投入一些成本进行市场调研和产品开发。
然后,当你找到了一个可能赢的策略,就进入了“价值验证”阶段。
你开始实施你的策略,看看它在实践中是否有效。
如果你的策略确实提高了胜率并使期望值转为正,那么你就找到了一个有效的策略,就像创业者找到了一个有效的商业模式。
所以说,这个两阶段过程的确有一些与精益创业相似的地方。
但请注意,这只是一个类比,两者之间还有很多区别。
例如,创业过程中的许多因素,如市场竞争、客户反馈、技术更新等,在游戏或投资中可能并不适用。
孤独大脑:那么,我们上面说的第二个阶段,对应的是精益创业的哪个阶段?
ChatGPT:第二个阶段,即期望值为正的阶段,可以对应到精益创业的持续优化和扩大规模阶段。
在这个阶段,创业者已经验证了他们的价值假设,也就是说他们已经找到了一个满足市场需求的产品或服务,并已经找到了一条有效的商业模式。
然后,他们需要在这个基础上继续优化产品或服务,提高产品质量,增强用户体验,以提高客户满意度和用户留存率。
同时,他们也需要开始扩大规模,拓展市场,吸引更多的客户,增加销售额,以实现更大的商业成功。这可能包括增加营销和销售活动,扩大生产规模,拓展到新的市场,甚至寻找新的收入来源。
同样地,在第二个阶段的游戏或投资中,你已经找到了一个有利可图的策略,然后你需要在这个基础上继续优化你的策略,提高你的胜率,以提高你的收益。
同时,你也可能需要开始扩大投资规模,投入更多的资本,以实现更大的收益。
总的来说,这个阶段的主要目标是在验证了价值假设后,实现持续的优化和扩大规模,以实现更大的成功。
七、亏和赚的不对称
孤独大脑:我们说回凯利公式吧,它的目标是最大化长期的复利增长。
如果算到每年,其实就是最大化每年的复合回报率,也就是最大化期末财富的几何平均值。
ChatGPT:你的理解完全正确。凯利公式的目标就是最大化长期的复利增长,换句话说,它试图找到一个投资策略,使得在长期内你的期末财富的几何平均值达到最大。
这是因为,在投资中,我们对复利回报非常感兴趣,因为复利回报是资产增长的关键驱动力。
这一点很重要,因为许多投资者可能会犯一个常见的错误,那就是关注算术平均回报,而忽视了几何平均回报。
算术平均回报可以给出一种投资策略在每个时期的平均收益,但是它并不能准确反映一个投资策略的长期表现。
反之,几何平均回报更能准确地描述投资的长期增长,因为它考虑了资产价值的复利增长。
因此,凯利公式的目标就是找到一个策略,使得期末财富的几何平均值最大。这通常意味着它会建议投资者在面对有利的机会时增加投资,而在面对不利的情况时减少投资。
这是一种动态的投资策略,需要投资者在每个时期都根据当前的胜率和赔率来调整投资比例。
孤独大脑:我们讲一下几何平均回报和算术平均回报之间的差别吧。
ChatGPT:好的,来看一个简单的例子。
假设你有一个投资,第一年你赚了50%,第二年你亏了50%。让我们看看算术平均回报和几何平均回报是如何计算的。
算术平均回报很简单,你只需要把每年的回报相加然后除以年数。在这个例子中,算术平均回报就是(50% - 50%)/ 2 = 0%,看起来你没有赚也没有亏。
然而,如果我们真正地去看你的投资表现,情况就不是这样了。假设你初始投资了100元,第一年你赚了50%,所以你有150元。第二年你亏了50%,那么你就只剩下150元的50%,即75元。实际上,你在这两年里亏了25元。
这时候,你需要计算的是几何平均回报,也就是每年投资的复合增长率。在这个例子中,几何平均回报是(75/100)^(1/2) - 1 = -13.4%,这意味着每年你平均亏损了13.4%,这才是反映你真实投资表现的指标。
这个例子清楚地表明,当我们关注投资的长期表现时,几何平均回报(也就是复合年化回报率)比算术平均回报更能准确地反映投资的真实收益。
这也是为什么凯利公式的目标是最大化几何平均回报,而不是算术平均回报。
孤独大脑:显然,我们一生的财富复利,是一个连续相乘的过程。所以,涨50%与跌50%并不对称。
ChatGPT:你说得对。
我们在计算投资收益时,涨50%和跌50%并不对称,这是因为投资收益是按照复利计算的,而不是简单地相加或相减。
这就是为什么几何平均回报(反映复利增长)比算术平均回报(简单地加总每个时期的收益)更能准确地反映投资的真实收益。
复利是一种强大的力量,它可以使你的投资在长期内显著增长。
但是,复利同时也意味着你的损失会被放大。如果你的投资在某一年亏损了很多,那么你需要获得更高的回报才能弥补这个损失。
例如,在我们前面的例子中,投资第一年赚了50%,第二年亏了50%,结果是投资总体上亏损了。
这就是为什么我们在评估投资的风险和收益时,需要考虑到复利的影响。
这也是为什么凯利公式在确定投资比例时,会考虑到赔率和胜率,以便在最大化期望收益的同时,尽可能地减少亏损的可能性。
通过动态地调整投资比例,凯利公式能够帮助投资者在保持投资回报的同时,有效地管理投资风险。
八、避免归零
孤独大脑:按照我们上面的说法,“损失厌恶”其实也有理性的一面,而且还有数学解释呢。
ChatGPT:确实如此。
“损失厌恶”是行为经济学中的一个重要概念,指的是人们对损失的厌恶感大于对同等数额收益的喜爱感。
从传统的经济学角度来看,这似乎是非理性的,因为正常的风险厌恶者应该对收益和损失的感受是对称的。
然而,实证研究发现,人们的行为往往是损失厌恶的。
从数学的角度看,损失厌恶其实有其合理之处。
正如我们前面讨论的,由于投资收益的复利效应,损失确实比同等数额的收益更具破坏力。一旦你的投资亏损,你需要获得更高的回报才能弥补损失。
因此,对于希望长期复利增长财富的投资者来说,避免亏损就变得尤为重要。
孤独大脑:我们是不是可以这样理解,凯利公式一方面是为了最大化长期的复利增长,一方面是为了避免因短期运气不好而被归零的风险。
ChatGPT:你的理解非常准确。
凯利公式的目的确实是在追求最大化长期复利增长的同时,尽可能降低在短期内遭受重大损失甚至破产的风险。
具体来说,凯利公式推荐的投注比例是基于你的胜率和赔率来计算的。如果你的胜率较高,或者你的赔率较好,那么凯利公式将推荐你增加投注额。
然而,无论你的胜率和赔率如何,凯利公式推荐的投注额都不会超过你的全部资金,这就确保了你在任何一次投注后都不会破产。
永远不要All in,更不要加杠杆。
同时,由于凯利公式推荐的投注额是根据你的胜率和赔率动态调整的,因此当你的运气不好,或者你的策略效果下降时,凯利公式会自动降低你的投注额,从而降低你的风险。
这就是凯利公式如何在追求长期增长的同时,避免短期的重大损失。
所以,如果你正在寻找一个既可以最大化长期回报,又可以管理短期风险的策略,那么凯利公式可能是一个值得考虑的选项。
九、伯努利原理
孤独大脑:请你说说伯努利原理和凯利公式之间的关系。
ChatGPT:伯努利原理和凯利公式都是解决风险决策问题的重要工具,但它们的应用场景和侧重点不同。
伯努利原理,或伯努利定理,是概率论和统计学中的一个基本定理,它描述了在大量独立实验中,实验结果的平均值会趋近于期望值。
在投资领域,伯努利原理常被用来描述资产的期望回报。如果我们把每一次投资看作是一个独立实验,那么伯努利原理告诉我们,随着投资次数的增加,我们的平均收益将趋近于投资的期望收益。这就是众所周知的大数定律。
而凯利公式则是一个优化工具,它告诉我们应该如何分配资金,以在给定的胜率和赔率下,最大化投资的长期复利回报。
凯利公式的目标不仅仅是期望收益,而是长期的复利增长。因此,凯利公式的应用往往更侧重于风险管理和资金分配。
总的来说,伯努利原理和凯利公式都是帮助我们理解和管理风险的重要工具,但它们的侧重点不同:
伯努利原理更侧重于理解风险;
凯利公式则更侧重于管理风险。
孤独大脑:那么,长期看,运用凯利公式所实现的期望值,与伯努利原理计算的期望值是否一样?
ChatGPT:在理论上,运用凯利公式所实现的长期期望值(复利增长率)和伯努利原理计算的期望值(算术平均回报)可以是不同的。
原因在于这两者考虑的重点不同:
伯努利原理侧重于每次投注的平均回报;
凯利公式则关注的是长期复利增长。
实际上,运用凯利公式管理投资策略,我们的目标是最大化长期复利增长,而不仅仅是每次投注的平均回报。
这也就意味着,即使在短期内存在波动,只要长期能实现更高的复利增长,我们就能获得更好的投资效果。
这就是为什么凯利公式在实践中往往能带来更好的投资效果,尽管在单次投注的期望值上,它可能并不是最优的。
通过合理的风险管理,我们可以避免由于短期波动而导致的大幅损失,从而保证长期的复利增长。
所以,虽然伯努利原理和凯利公式的期望值计算可能不同,但凯利公式往往能为投资者带来更好的长期投资效果。
十、实现遍历性
孤独大脑:是不是可以这样说,凯利公式从理想的角度,例如赔率、胜率是已知并且不变的,理论上确保了投资者的遍历性?
ChatGPT:在理想条件下,凯利公式确实能帮助投资者优化他们的投注策略以最大化长期复利增长。
这种优化在一定程度上确保了投资者在所有可能的投注结果中的遍历性,也就是说,如果按照凯利公式进行投注,长期来看,投资者将在各种可能的结果中均有所得,最终实现长期复利的最大化。
然而,这并不意味着凯利公式可以完全确保投资者的遍历性,因为实际中的许多因素,如市场波动、不确定性、以及投资者自身的行为偏好等,可能会影响到投资者的遍历性。
因此,虽然在理想条件下,凯利公式在理论上可以增强投资者的遍历性,但在实际应用中,投资者还需要考虑到其他的因素,并灵活调整自己的投注策略。
孤独大脑:对于上面遍历性的讨论,我们是不是可以有个简单形象的描述——凯利公式可以确保投资者在一个期望值为正的项目中能够始终留在牌桌上,进而有机会实现最大化长期收益。
ChatGPT:是的,这是一个很好的形象化的描述。
凯利公式确实能够帮助投资者最大化长期复利增长,同时也能避免短期内由于运气不好而把自己逼到牌桌之外。
这就意味着,只要投资项目的期望值是正的,即你做出的投资决策是有益的,那么你就可以通过凯利公式找到一个最佳的下注比例,使得你在面临短期风险时仍然能够坚持下去,从而实现长期的收益最大化。
这个过程就像是在赌场中始终留在牌桌上,通过长时间的积累实现收益的增长。
孤独大脑:就像我们本文开始讲的那三个小故事,确保自己始终有下注的能力,有进一步行动的本钱,是非常重要的。
ChatGPT:你提到的三个故事非常精彩,它们都展现了在极端情况下,始终保留下注能力的重要性。
这三个故事的主角们,他们的“最后一口水”,“最后一层楼”以及“最后一笔财”,都代表了他们的最后一次下注的机会。
在投资领域,这种思想也是至关重要的。无论我们面临怎样的挑战,我们都应该确保自己始终有机会继续投资,有机会抓住可能出现的利润机会。
这就是我们在谈论凯利公式时所强调的:最大化长期收益的同时,也要确保始终留在游戏中。
不论是在生活中还是在投资中,我们都应该倾听这个信息:不要一次性把所有的资源都用完,而是要留有余地,这样当出现新的机会时,我们还有本钱去抓住它。
这就是我们讨论遍历性时所说的——始终保持在游戏中的能力,以便在长期中实现最大收益。
十一、攻守兼备
孤独大脑:我觉得,凯利公式对投资者而言,特别强调攻守兼备。的确,伟大的投资者,首先都是伟大的防守者。这和下棋很像。
ChatGPT:你的比喻十分恰当。无论是投资还是下棋,攻与防都同样重要,这是一个平衡的过程。
在下棋中,如果只考虑攻击而忽视防守,可能会因为疏忽而输掉比赛。
同样,在投资中,如果只追求最大的收益而忽视风险,可能会因为市场的变动而遭受损失。
凯利公式,作为一种优化投资策略的工具,提供了一种有效的平衡攻守的方法。它通过计算得出最优的投资比例,以期在追求最大收益的同时,降低可能出现的损失,使投资者始终能保持在游戏中。
同时,凯利公式强调了长期视角的重要性,这也是伟大的投资者和下棋高手们共有的特质。他们总是能从长期的角度看待问题,能在瞬息万变的局势中,预见并计划未来的发展。
总的来说,投资如同下棋,需要考虑的因素众多,而凯利公式则提供了一种有效的策略,帮助我们在复杂的游戏中找到最优的路径。
十二、源源不断的现金流
孤独大脑:说起厉害的投资者,还有一点非常重要,对比普通投资者,他们有源源不断的现金流。
如此一来,在凯利公式的框架里,他们就有更多本金来调节,让几何平均数更大,从而整体回报也更高。
尤其是,在整个市场出现较大回调时,补充弹药可以起到很大的杠杆作用。
ChatGPT:你说得非常对,现金流对于投资者而言的确是非常重要的。
首先,源源不断的现金流意味着投资者有能力在必要的时候调整投资策略。比如在看好的机会出现时增加投资,或者在市场环境不佳时减少风险。这样的灵活性对于追求最大收益是非常有帮助的。
其次,强大的现金流还为投资者提供了更大的风险承受能力。投资总是伴随着风险,即使在凯利公式的指导下,也无法完全避免可能出现的损失。然而,有了强大的现金流,投资者可以更有信心去承受这些风险,因为他们知道自己有足够的资源去应对可能出现的困难。
此外,对于那些有持续现金流的投资者,他们可以使用这个优势来提高自己的回报。比如说,他们可以使用这部分现金去投资那些可能带来高收益但需要较大资金的机会,或者在市场低迷时,他们可以买入更多的股票,从而在市场回升时获取更大的收益。
总的来说,现金流的确是投资者的一项重要优势,它可以帮助投资者更好地运用凯利公式,从而获取更大的收益。
十三、凯利公式的“缺点”
孤独大脑:说说凯利公式的缺点,以及我们使用时要特别小心什么。
ChatGPT:虽然凯利公式在理论上是最优化长期资本增长的投资策略,但在实际应用中,确实存在一些需要注意的问题和挑战。
1. 预测的准确性
凯利公式的应用依赖于对胜率(赢的概率)和赔率(赢时的回报率)的准确预测。
然而,很多时候,尤其是在投资市场中,这两个变量是难以精确估计的。
如果预测的不准确,使用凯利公式可能导致过度投资或者投资过少。
2. 风险容忍度
凯利公式的建议投资比例可能会非常高,特别是在预期的回报率远大于损失时。
这可能会导致在短期内的资本波动过大,这对于风险厌恶的投资者来说可能是不可接受的。
3. 赔率的变化
在许多情况下,赔率并不是固定的,而是会随着市场状况的变化而变化。
在这种情况下,使用凯利公式计算出来的投资比例可能需要经常调整,这可能在实践中是不现实的。
4. 假设的限制
凯利公式假设每次投资都是独立的,这在许多投资场景中可能并不适用。
例如,如果你在股票市场投资,市场的总体状况可能会影响所有的股票,这就使得投资的结果并不是独立的。
因此,在使用凯利公式时,我们需要认识到这些挑战和限制,同时结合其他投资工具和理论来做出投资决策。
例如,我们可能需要结合其他风险管理工具,如分散投资,来降低风险。同时,我们可能需要结合市场研究和经济分析,来更准确地预测胜率和赔率。
总的来说,凯利公式是一个有用的工具,但需要谨慎使用。
十四、小心使用
孤独大脑:的确如此。最初索普使用凯利公式,是用在赌场玩儿二十一点。
这类游戏和投资有很大不同,二十一点的胜率和赔率是相对稳定的,而且是可以高频、大规模地下注,比较容易实现所谓的遍历性。赌场的每一次下注也符合概率原理里的独立性。
但投资并不一样。
ChatGPT:确实,凯利公式最初是用在赌场二十一点的环境中,这个环境与投资市场有很大的不同。
1. 赔率和胜率的稳定性
在赌场二十一点游戏中,赔率和胜率是相对稳定的。
而在投资市场中,赔率(即预期的回报)和胜率(即投资成功的概率)通常是不稳定的,会受到许多因素的影响,比如市场环境、宏观经济、公司基本面、政策风险等等。
这种不稳定性增加了凯利公式应用的难度和风险。
2. 投资的独立性
在赌场的二十一点游戏中,每一次的游戏都是独立的,即之前的游戏结果不会影响到后面的游戏结果。
而在投资市场中,投资的结果并不总是独立的。
比如,市场的总体趋势可能会影响到所有的投资,公司的某次财报可能会影响到接下来的股票价格等等。这种依赖性使得凯利公式的应用更加复杂。
3. 投注次数
在赌场中,投注次数可以非常多,而且每一次投注的间隔相对较短。这使得遍历性可以较容易地实现,即在足够多的次数下,结果将接近预期的平均值。
而在投资市场中,由于市场只有每天开放一次,投注次数相对较少,且投注间隔长,这使得在短期内可能会有很大的波动,遍历性的实现更加困难。
综上所述,虽然凯利公式在理论上是一个优秀的投资工具,但在实际投资环境中,由于上述原因,它的应用需要更加谨慎,同时需要结合其他投资工具和策略。
孤独大脑:有一种建议是,投资者可以按照凯利公式来计算投资比例,然后再除以二,作为实际的投资比例。
ChatGPT:这种策略通常被称为“半凯利”投资策略。
其基本思想是,虽然凯利公式能够提供期望回报最大化的投资比例,但由于该公式对预测赔率和胜率的准确性有很高的依赖性,以及它可能产生的风险水平可能超过许多投资者的风险承受能力,因此在实际操作中,投资者可能会选择投入较为保守的资金。
“半凯利”策略实际上就是将凯利公式计算出来的投资比例减半,从而达到在期望回报和风险之间更好的平衡。这种策略降低了投资者的风险敞口,同时还保留了利用凯利公式进行优化的优点。当然,这也意味着可能的期望回报将会降低。
总的来说,“半凯利”策略是一种相对保守的投资策略,适合对风险有较高敏感度或对赔率和胜率预测不甚确定的投资者。
然而,无论采取何种策略,投资者都应该理解凯利公式和风险管理的基本原理,并根据自己的风险承受能力和投资目标来做出决策。
十五、“香农恶魔”策略
孤独大脑:我们说说香农吧,他不仅是位优秀的科学家,投资上据说也很厉害。
ChatGPT:克劳德·香农是一位非常出色的科学家,他的贡献在信息理论、密码学以及很多其他领域都得到了广泛的认可。然而,他的才能并不止于此,香农也是一位出色的投资者,他对投资的理解和策略值得我们学习。
他在后半生投身于股票,从1950年代末到1986年取得了年化28%的收益率,据说比巴菲特还高。
孤独大脑:香农曾经提出过一种被叫做Shannon's Demon的投资方法,具体如下:
用投资组合的50%仓位持有一只股票,另外50%为现金。
操作的方法就是每天让这个组合中股票和现金的比例保持50/50。 假设有10000元,其中5000买了一只股票;
假如第二天股票跌了一半,你有2500的股票市值和5000现金,重新配置仓位(Rebalance),现在有3750的市值和3750的现金。
下一天,假如股票翻倍,你有7500的市值和3750现金,总资产11250,收益11250。
虽然股票价格没变。如果按价值投资者持有不动不会有任何收益。 这个方法的优点在于,完全不用预测市场涨跌,不需要任何先验信息。特别适合于震荡市。
不过香农说由于过高的佣金,他自己并没有使用该方法。
ChatGPT:香农的这种投资方法,即所谓的“香农魔鬼”或“香农恶魔”策略,的确具有一定的理论吸引力。
这种策略基于的是资产的再平衡原则,通过定期调整资产组合,使其保持在一个预定的固定比例。在这个例子中,就是保持股票和现金各占投资组合的50%。
这种策略的主要优点是,它不依赖于市场的涨跌预测,只关注资产的比例。
因此,无论市场如何波动,只要定期调整投资组合,就可以实现一定的收益。这也是为什么这种策略在震荡市中特别有效,因为震荡市中的价格变化会创造出更多的再平衡机会。
然而,香农魔鬼策略也存在一些局限性和风险。
首先,频繁的再平衡会增加交易成本,这可能会侵蚀掉一部分收益。
其次,这种策略在大幅上涨或下跌的市场中可能不如简单的持有策略有效,因为再平衡可能会导致卖出正在上涨的资产或买入正在下跌的资产。
此外,这种策略也需要投资者有一定的心理承受能力,因为在市场下跌时,可能需要不断地买入下跌的资产。
总的来说,香农魔鬼策略是一个有趣且理论上有一定吸引力的投资策略,但在实际应用时,需要考虑到交易成本和市场环境的影响,并根据自己的风险承受能力做出适当的调整。
孤独大脑:那么,香农的高回报是如何实现的?
ChatGPT:香农的投资成功更多的是源于他在信息理论和概率理论方面的专业知识,以及他对技术和创新公司的深入理解。
然而,他的投资哲学,特别是对风险和机会的均衡理解,对很多投资者和投资理论的发展产生了深远影响。
有记载称,香农的投资策略实际上更倾向于对创新技术和新兴行业的长期投资。
他相信技术的进步和创新是驱动经济增长的主要因素,因此,他大量投资了一些在当时被视为风险较高的科技公司,包括早期的计算机公司和电信公司。
此外,香农也被称赞为是一位出色的投资者,他对市场的理解和对风险的把握显示出了他在投资领域的独特见解和深厚实力。
总的来说,虽然香农可能没有直接应用他的“香农魔鬼”策略,但他的投资哲学和实践无疑为后世的投资者和理论家提供了宝贵的启示。
十六、“凯利公式”小结
孤独大脑:我们对凯利公式和下注比例做个总结吧。
ChatGPT:总结一下我们的讨论。
1. 凯利公式是一个强大的工具,它可以帮助我们理解如何最大化长期投资回报。这个公式告诉我们,对于任何有正期望值的投资机会,应该投资的比例是多少,以最大化长期的复合增长。
2. 凯利公式的应用需要慎重考虑,尤其是在估计胜率和赔率时。在实际应用中,这些参数往往很难准确估计,如果预测不准确,可能导致过度投资或投资不足。
3. 不断的再平衡(Rebalancing)是一个重要的策略,它可以帮助我们利用市场的波动,进一步提高投资回报。这个策略的优点是,不需要预测市场的走势,只需要定期调整投资比例,使其保持在一定的比例。
4. 投资是一种平衡风险和回报的活动。虽然我们都希望获得高回报,但是我们也不能忽视风险。凯利公式可以帮助我们理解这种平衡,但在实际应用中,我们还需要考虑我们自己的风险承受能力。
5. 投资不仅仅是选择正确的投资项目,还需要正确的投资比例和时间。凯利公式和再平衡策略都强调了这一点。
十七、十个“财富思维”
孤独大脑:请你结合以上所有讨论,给出对普通人而言最重要的十条财富思维。
ChatGPT:以下是对普通人而言十个重要的财富思维原则:
1. 理解投资基础。了解投资基础知识,如凯利公式、风险和回报的关系,以及复利增长的原理,都是非常重要的。
2. 审慎决策。在投资决策中,不要只看到可能的回报,也要看到其中潜藏的风险。这需要你对投资目标进行充分的研究和理解。
3. 应急准备。无论是个人生活还是投资活动,都应有足够的现金或等效资产作为应急储备,以应对意外情况和新的投资机会。
4. 分散投资。不要将所有的鸡蛋放在一个篮子里。通过在不同的资产类别、地理位置和行业中投资,你可以有效分散风险。
5. 长期视角。投资不是一夜暴富的游戏,而是长期积累的过程。耐心和长期投资通常能带来更好的回报。
6. 利用市场波动。市场波动性并不一定是坏事,如果你有正确的工具和策略(如凯利公式和再平衡策略),你可以利用这些波动获取利润。
7. 保持学习。金融市场和投资策略是不断发展的,永远保持学习和适应变化的心态是非常重要的。
8. 避免情绪化决策。投资决策应该基于事实和理性分析,而不是基于市场的短期波动或者情绪化的反应。
9. 尊重数学。投资和财富管理的许多原则都可以从数学中得到,如凯利公式的最大化长期增长,以及复利增长的力量。
10. 保持谦虚和开放。即使是最成功的投资者也会犯错误。承认错误,并从中学习,可以帮助你成为一个更好的投资者。同时,对所有类型的投资持开放态度,可以帮助你发现新的机会。
以上这些原则和思维方式可以帮助我们在投资和财富管理上做出明智的决策。然而,需要强调的是,每个人的情况和需求都是独特的,所以你的投资策略应该是根据你自己的目标、风险承受能力和时间范围来定制的。
十八、最后
孤独大脑:请允许我为本文收尾。
回到最开始的三个故事,对于每个人而言,确保自己始终有下注的能力,有进一步行动的本钱,是非常重要的。
我们未必真要懂得凯利公式的计算,在现实中也很难有完美应用该公式的环境,但是其传递的理念值得铭记:聪明下注,永远给自己留一手牌。
此外,凯利公式计算的结果,是按照比例下注的。
所以,未必钱少的人就要去赌,要去搏一把。
因为要实现最终长期回报最大化,我们需要的是“最合适”的策略,而非“最拼命”的策略。
祝你好运。
本文来自微信公众号:孤独大脑 (ID:lonelybrain),作者:老喻