就在一年前,2023年5月,OpenAI的CEO Sam Altman曾在美国国会听证会上提到过AI正在被武器化的事实,并赞同“像监管核武器一样监管AI”的提议。

 

如今,美国军方已经急着要把 “制空权”交给AI了。

 

5月2日,美国空军部长Frank Kendall在美国加州爱德华兹空军基地亲自体验了AI驾驶的X-62A VISTA战机。

 

在此之前,美国国防高级研究计划局(DARPA)在4月20日就已经进行过AI战机X-62A VISTA对抗人类驾驶F-16的首次实战模拟。


AI驾驶的F-16 战斗机(左)与人类驾驶的F-16并肩飞行,两架飞机彼此相距不到304米

 

X-62A VISTA是F-16的改款战机,目前全球共有超过4600架F-16战斗机在役,在美国的盟友当中行销20多个国家,会开F-16的AI,可能已经具“渗透”到任何西方国家的空军中的能力。

 

美国人不是很担心AI的安全吗,为什么这么着急要让AI开战斗机?

 

装备不够,AI凑?

 

“我们正在抢占技术优势,这是比赛的关键。”Kendall在接受采访时表示,没有开发AI武器的对手会在实战中“付出代价”。

 

对于AI战斗机的规划,Kendall认为,可以把AI战机放在一些故意要牺牲的地方,去“找出敌人在哪或者吸引火力”。



美国空军部长Frank Kendall“试驾”AI战机


吸引火力还比较容易理解,但没有AI就找不到敌人了吗?

 

在索敌这件事上,一直以来的主要方法是靠雷达。第四、五代战机的空战中,用雷达发现敌人会受到两个因素影响,第一是雷达的可检测范围有限,第二就是隐形战机的普及。

 

雷达的检测范围决定了谁先发现对方。现代战争的基本逻辑是发现即摧毁,空战更是如此。在茫茫天空中,先找到敌人是战斗胜利的第一步。

 

空战常用的雷达系统有预警机雷达和战机机载雷达两种。

 

第四代战机的机载雷达扫描范围大多在100-200公里,目前各国列装的预警机可扫描范围一般可达400-500公里。不考虑隐形战机的话,成规模的现代空战,在400公里范围基本上都可以发现对方。

 

不过,一些国内媒体曾提到过,中国最新预警机空警-2000的低空探测范围已达到最大800公里,大幅超过美军的E-3、E-2预警机。如果我军预警机真能达到这样的探测范围,那么美军要用AI操纵的F-16“蒙眼蹚雷”,就变得比较说得通了。



预警机

 

在隐形方面,美军的F-22和F-35列装后,第五代战机逐渐成为空战主力,其重要特性就是躲避雷达探测的“隐形”能力。

 

2017年我军隐形战机歼-20也开始服役。作为美军长期以来的假想敌,歼-20列装无疑对美军的空中雷达探测能力发起了巨大挑战,在未来空战中如果双方都是隐形机群,在反隐能力没有巨大差距的情况下,空中战场很可能回到“白刃战”的时代。

 

在空中的“白刃战”当然更需要吸引火力的“炮灰”,但这不也是说让AI战机“蒙眼白送”。

 

首先,在发现即摧毁的原则下,飞机雷达发现敌人后其实并不会马上开火。因为空空导弹的射程通常达不到雷达的可检测范围,即便能达到,也不能保证命中敌机。

 

战机驾驶员一般会选择“放近了再打”,让敌机进入到空空导弹的“不可逃逸射程”再开火。在实战中,不可逃逸距离的长短并不固定。但这个不可逃逸射程,与导弹的最大射程通常是正相关的。

 

我军目前主力的霹雳-15空空导弹,据报道最大射程为200公里,飞行速度为5马赫。已装备的新型霹雳-17,据报道射程可能达到300-500公里。

 

然而,美军主力的AIM-120空空导弹,最大射程是160公里,飞行速度是4马赫。正在研发,尚未装备的AIM-260,外界普遍猜测最大射程可能也不会成倍超过200公里。



空对空导弹

 

在成规模的空战中,如果导弹射程不够,没法实现远距离摧毁目标的话。那可能真的需要带着“神风特攻队”的精神,冲进敌人的有效射程内“贴脸”开火了。

 

F-35用不起了

 

X-62A VISTA是AI在美国主力战斗机上的首次尝试,而与之相似的其他类型AI战机,早在10年前就已在各国军中开始试验,包括美国的X-47B、XQ-58A,以及中国的“无侦”无人侦察机。

 

美国的X-47B、XQ-58A两款无人战机,都曾尝试过AI自主控制的起降和飞行,X-47B还完成过AI控制的空中加油。

 

不过这些完全没有驾驶舱的无人机,基本都不能超音速飞行,而且机载武器有限。这种无人机的主要功能是侦查和较简单的打击任务,空对空作战能力相对有限,与美军主力的F-16、F-22和F-35完全没法相比。

 

当然,价格也没法相比。

 

XQ-58A的Valkyrie型无人机每架成本为750万美元。而每架F-35C的造价则是9000万美元,每年的运维成本都高达到660万美元。



XQ-58A


连买带养,一架F-35C一年的成本可以买14架较轻型的AI无人机XQ-58A。

 

目前,美国海军的福特级航空母舰可以搭载大约70架左右战斗机。以美国海军的编制,一个F-35C中队约24驾飞机,总成本为21.6亿美元。而一艘福特级航母的造价约为127亿美元,我军的福建舰造价大约在500亿元人民币。

 

除了制造成本,AI系统的研发成本也不高。

 

2020年,美国承包商EpiSys Science, Inc.(EpiSci),获得了DARPA价值740万美元的研发合同,负责开发可信的战术人工智能 (AI) 算法作战自主权,这份合同研究很可能与如今看到的X-62A VISTA有关。

 

740万美元的研发经费,对于战斗机来说相当便宜。

 

F-35的研发总成本约为4000亿美元,自2019年以来,美国政府还给F-35制定了为期8年的现代化升级计划,预计每年研发经费为19亿美元。

 

打仗就是比谁钱多,比谁花钱的效率高。

 

能省钱的AI战机,已经被美国海军认为是航母飞行甲板上的未来。美国海军提出希望用一部分AI无人机以僚机的形式代替F-35,组成“F-35+无人机”的新型战斗群。美国海军预测未来高达60%的舰载机联队将由无人机组成。

 

不过,便宜的AI无人机飞行速度只有第四、五代战斗机的一半,实战中能否真的在多对一或是协作战斗中取胜,还有待研究。

 

人力太贵,还招不上人

 

除了降低先进战机的开支,AI驾驶员还能给美军解决一些HR的问题。

 

首先肯定是减少人员伤亡。近几十年,美国的5次海外军行动(代号:OIF、OND、OEF、OIR、OFS)中,空军战斗阵亡总人数为1064人(截至2024年5月7日)。



美军对外军事行动阵亡人数统计

 

虽然5次军事行动的阵亡人数只有抗美援朝期间的1/4。不过这些军事行动,几乎都没怎么与实力对等的敌人展开成规模的空战。

 

其次是飞行员短缺。美国空军人事中心的数据显示,截至2024年3月31日,美国空军现役中校以下飞行员11921人。一直以来,美国空军希望现役飞行员人数达到13000名,另外在空军国民警卫队和空军预备役中再雇约8000名飞行员。

 

美军认为长期缺乏飞行员正在成为“潜在危机”,Kendall在2022年5月曾对美国国会表示,美国空军正在积极解决飞行员不足的问题。

 

AI战机的登场不禁让人想到,这是不是Kendall解决飞行员短缺问题的方案之一呢?

 

其实美军飞行员的薪酬水平很高,一名中级军官(如上尉)的基础薪资加上其他福利年薪超过10万美元。级别更高或服役时间更长的飞行员还会有更多津贴。相比之下,美国的平均年薪在2022年为约5.5万美元。

 

美国国防部公布的2024年美军薪酬数据显示, O-1级别(二级陆军中尉)的飞行员在服役两年以下时,每月的基础军饷为3826.2美元。随着服役年数的增加,基础军饷会有所提高。例如,O-3级别(上尉)的飞行员在服役两年后,基础军饷为5783.7美元/月。


美军工资

 

美军飞行员还可以根据其飞行的资历获得额外的月度飞行津贴(AvIP),这一津贴的金额从150美元到1,000美元不等。为了鼓励留在进队,美国空军也会给飞行员很高的航空奖金(AvB),数额可能达到35000美元/年。

 

此外,美军飞行员的培训成本也相当可观。分析机构RAND Corporation在2019年发布的一项调研显示,美国空军训练一名基本合格飞行员的成本在110万-1090万美元不等

 

F-16飞行员的培训成本约为560万美元,F-22为1090万;轰炸机飞行员的培训成本也很高,B-1为730万,B-52为970万;运输和机动飞行员的培训成本相对较低,从C-17为110万,C-130J为250万;负责指挥、控制、情报、监视和侦察操作的RC-135等机型飞行员培训成本约为550万。

 

RAND Corporation估算的成本包括飞行小时成本、学员的住宿和薪酬等,但这只是飞行员培训成本中的一部分,飞行员培训还需要很多其他费用,如模拟器使用费、教材和教官费用等。

 

AI战机不科幻,但很远

 

把战斗机交给AI,首先要担心的不是科幻的“AI变节”问题。

 

大语言模型爆发以来,社会各界都在担心AGI即将到来,强人工智能即将到来。由此,很多人还产生了AI即将毁灭世界的恐惧。

 

但把战斗机交给AI,其实没那么可怕。因为操纵战机的AI主要是判别式AI或决策型AI,这些系统不太具备ChatGPT这样强的泛化能力,与今天的大语言模型、生成式AI基本没啥关系,也与AGI相去很远。

 

因为军事装备对AI大模型实在太不友好了。

 

首先是算力,美国攻击无人机制造商Anduril工业的CEO Palmer Luckey就曾说过:特斯拉的人工智能比美国军用车辆更好,iPhone 的计算能力也比国防部常用的系统强大得多。


军工用芯片,特别是用于战略核潜艇、F-22超音速战斗机和洲际导弹等高端军事装备中的芯片,对可靠性和耐受恶劣环境能力的要求很高,因此通常采用的制程尺寸比民用芯片要大。

 

主流的AI芯片如GPU、TPU等普遍采用7纳米、5纳米等较小的制程尺寸,而很多军用芯片采用的制程尺寸可能达到250纳米。

 

较大的晶体管尺寸有更大的电流承载能力和更厚的氧化层,能更有效地抵抗环境侵害,对高温、辐射、电磁干扰等恶劣条件的耐受度高。小尺寸芯片由于其微小的特征尺寸,对于辐射引起的电荷集聚(如由宇宙射线引起的单粒子翻转)也更为敏感。

 

大尺寸晶体管的热容和散热能力也会优于小尺寸晶体管,这使得它们在高温环境下能更好地工作而不容易出现性能降低。

 

另一方面,军工中应用的AI模型需要具备较高的稳定性和可解释性,而Transformer为代表的大模型在这方面的表现仍不完美。

 

要将Transformer应用在军事装备中,则需要集成额外的解释性机制或工具来提高模型的透明度。稳定性方面,则可以通过精细的测试和验证过程,结合使用更加稳定的训练技术,如正则化方法和鲁棒性优化,来确保模型的稳定性。

 

军工单位虽然保守,但同样能够感受到AI大模型的冲击。” 一位从事相关科研工作的专家告诉虎嗅,已经有人在尝试把Transformer这样的大模型“带上”飞机,中国一些军工科研单位就在研究与AI相关的技术,包括用AI帮助战斗机优化起飞、悬停等。

 

不过这位专家也表示,虽然X-62A VISTA已经完成了一次与人类战机的“狗斗”(Dogfight,格斗空战),但要在真实世界中完全自主驾驶战斗机,甚至参与战斗对于AI来说,其实还有一段距离。

 

DARPA的发言人在介绍AI驾驶战斗机存在的问题时表示,AI可能会使飞机的飞行控制面超出其极限。在进行高强度机动时会受到物理限制并损坏飞机。为此,DARPA在X-62A VISTA 中设立了一个“安全行程”,以防止AI程序对机身造成过度负荷。

 

事实上,要实现F-16战斗机的完全AI自主控制,AI必须能够处理极其复杂的战场情况,包括快速变化的战术环境、敌我识别、规避威胁、以及执行多种任务如侦察、空战和对地攻击。这些决策需要在分秒之间做出,要求AI系统具有高度的智能和响应能力。

 

此外,战场环境多变,AI还需要具备自我学习的能力,以适应新的战术和技术发展。这要求AI系统不断地从经验中学习并优化自身的行为和策略。

 

“AI与战斗机飞行员更多的是协作,飞行员可以把控制权交给AI一两分钟。”从Kendall对AI的描述看,短期内“AI驾驶员”的作用应该会与辅助驾驶,以及大语言模型中流行的“Copilot”概念差不多。