本文来自微信公众号:与非网eefocus (ID:ee-focus),作者:刘浩然,原文标题:《破解内存墙,除了“存算一体”还需要什么?》,题图来自:《异次元骇客》


20世纪初的物理学家不会想到,悬浮在物理学大厦上的两朵乌云会彻底颠覆整个物理学体系,冯·诺依曼在参与曼哈顿工程提出新架构时,也不会想到未来阻止芯片算力进步的竟然不是芯片本身。


冯·诺依曼结构的诞生与局限


1945年6月30日,美国正在秘密进行曼哈顿计划。冯·诺依曼作为该计划的重要参与者与领导者,与另外两位组内科学家发表了一篇长达101页的报告,这就是计算机史上著名的“101页报告”,也是现代计算机科学发展里程碑式的文献。


这份文件基于当时世界上第一台计算机埃尼阿克(ENIAC)提出,详细阐述了一种新型的计算机架构类型。彼时的电脑虽然采用了世界上最先进的电子技术,但缺乏理论指导,用现在的话讲就是“只堆料,不优化”。此外,早期电脑的用途单一,若仅设计用于数学计算,那它就不能用来处理文字内容,变更用途就需要对整体电路进行重新设计。


冯·诺依曼精准找出电脑运行缓慢的关键:处理器虽然可以快速完成计算,但在计算间隙,需要进行大量I/O步骤来保存计算的中间数据,这极大的拖累了处理器的整体处理速度。他将计算机结构重新调整,巧妙地将存储与计算分离,通过内部存储器存储程序,成功解决了当时计算机存储容量太小,运算速度过慢的问题。这种结构也创造了一组指令集架构,可以将机器运算转换为一串串编程语言,让此机器更有 “弹性”,不再需要频繁更改电路。后来人们将这种结构定义为冯·诺依曼结构(Von Neumann architecture)


冯·诺依曼结构 图源 | 百度百科
冯·诺依曼结构 图源 | 百度百科


冯·诺依曼结构也称冯·纽曼模型(Von Neumann model)或普林斯顿结构(Princeton architecture),它有以下几个特点:1. 以运算单元为中心;2. 采用存储程序原理;3. 存储器是按地址访问、线性编址的空间;4. 控制流由指令流产生;5. 指令由操作码和地址码组成;6. 数据以二进制编码。该结构由运算器、控制器、存储器、输入设备、输出设备五个部分组成。


简单来讲,冯·诺依曼结构将电路与程序分离,方便进行后期程序重新调整;程序员仅通过内部存储器写入相关运算命令,让计算机可以快速执行运算操作;二进制运算也能大大加快计算机的整体速度。


这种“存算分离”的结构也有自己的局限性:处理器与内存间的数据交换量同内存的整体储存量相比太小了,随着处理器技术的发展,这一比例更为悬殊。在一些特殊使用场景中(尤其是近年来火热的AI计算领域),处理器需要经常等待内存的数据回传,超高的延时严重拖慢了计算机整体的运行效率,内存性能逐渐成为限制计算机发展的关键。


与此同时,过高的信息交换量也带来了严重的发热问题与功耗问题。“内存墙”“功耗墙”与“散热墙”成为阻拦计算机算力发展绕不开的“三堵高墙”。


“内存墙”,绕开还是撞穿?


破解“内存墙”目前已经成为工业界和学术界的焦点问题。


绕开,意味着要放弃冯·诺依曼的“存算分离”结构,采用“存算一体”的结构模式,来规避内存墙对运算性能的限制。一些研究人员提出了一种以存储器为中心的体系结构,称为“智能存储”。其核心思想是将部分或全部的计算移到存储中,计算单元和存储单元集成在同一个芯片,在存储单元内完成运算,让存储单元具有计算能力。


“存算一体”结构目前较成熟的方案有查存计算(Processing With Memory)或近存计算(Computing Near Memory),可拉进内存与处理器的距离来降低大规模数据交换延时。除了成熟方案,存内计算(Computing In Memory)方案目前已成为各厂商的主要发力点,它的计算操作由位于存储芯片区域内部的独立计算单元完成,存储和计算可以是模拟的也可以是数字的,一般用于算法固定的场景算法计算。


存内逻辑(Logic In Memory)属于较新的架构,通过在内部存储中添加计算逻辑,直接在内部存储执行数据计算,真正做到了“存算一体”。它的数据传输距离最短,同时能满足大模型的计算精度要求,目前已有部分厂商已经在该结构上做出尝试。


<span class=text-remarks label=备注>四种存算一体结构 图源 | 《</span><span class=text-remarks label=备注>国产服务器CPU架构与行业研究报告</span><span class=text-remarks label=备注>》</span>
四种存算一体结构 图源 | 《国产服务器CPU架构与行业研究报告


撞穿,意味着要在冯·诺依曼结构内部做出技术革新,其核心问题就是提升内存处理速度与数据传输速度。提升传输速度需要在总线技术上发力,光互联技术采用波导方式传输数据,相比硅晶内部的载流子传输,具有损耗低、速度快、延时小的优点,可实现数据的高速传输,减少功耗。不过,面对内存墙无论是绕开还是撞穿,终归还是要降低内存处理的延时,提升整体计算速度,因此降低内存本身延时也很关键。


存算一体,离不开新式存储方式


冯·诺依曼结构中,DRAM作为一种能够快速反应的易失性存储介质,是作为处理器一级内存的不二之选。DRAM基于场效应管工作,通过电流控制MOS管开闭来控制电荷进出晶体管,晶体管中的电荷多与少代表了1和0,即每个存储单位可以储存1Bit数据。当电流消失,晶体管就会释放所有电荷,因此这种存储介质被称为易失性存储介质。


目前DRAM提升效率的主要方式就是增加工作频率,2666MHz、3200MHz、3600MHz等参数就是内存的工作频率。但随着半导体工艺尺寸逐渐减小,传统的基于互补金属氧化物半导体工艺的缓存和主存遭遇了性能瓶颈,量子隧穿问题时刻困扰着内存工艺的进步,延时也无法进一步降低。


近年来,各类“存算一体”芯片架构的诞生,让一部分延时更低的新式存储方式走进人们视线。其中PCRAM相变储存器、ReRAM电阻式存储器、MRAM磁变/磁阻存储器以及铁电存储器FRAM的出现为破解内存墙提供了新思路。


PCRAM又称PCM、OUM(Ovonic UnifiedMemory)和 CRAM(Chalcogenide Random AccessMemory),从名字可以看出,它利用相变材料作为储存介质。PCRAM在工作时通过对相变材料施加不同时长的电脉冲,使相变材料在不同程度的电流热效应下分别呈现出不同的结晶状态,并在两种状态之间快速切换。相变材料在非晶相态时呈现出半导体特性,具有较高的电阻值;在结晶相态时呈现出半金属特性,具有较低的电阻值。


因此,可以分别通过相变材料在非晶相态和结晶相态时呈现出的不同电阻特性来分别表示需要存储的数据。PCRAM具有较好的微缩能力,目前已经可以做到20nm工艺,因此其储存密度较DRAM更高。此外,由于相变材料可以在晶体态和非晶体态之间无极变换,通过更加精密的电阻探测方式,可以在单一存储单元内存储多Bit数据,因此PCRAM未来开发潜力巨大。


PCRAM  图源 | 百度百科
PCRAM  图源 | 百度百科


ReRAM,也称RRAM,电阻式存储器,是以非导性材料(金属氧化物)的电阻在外加电场作用下,在高阻态和低阻态之间实现可逆转换的非易失性存储器。ReRAM在工作时可以对金属氧化物施加电压,使材料的电阻在高阻态和低阻态间发生相应变化,并利用这种性质储存各种信息。与PCRAM原理类似,ReRAM也能在单个存储单元中存储多Bit数据。与DRAM相比,RRAM不仅满足高读写速度和存储密度的要求,同时延迟更低,可满足未来智能驾驶高实时数据吞吐量。


ReRAM  图源 | Objective Analysis
ReRAM  图源 | Objective Analysis


MRAM(Magnetoresistive Random Access Memory)是一种利用磁性工作的非易失性随机存储器。它和我们熟悉的“磁带”不同,MRAM的磁性并不依赖介质表面的磁粉,而是基于两个铁磁层磁化状态来存储信息,其核心元件就是磁性隧道结(magnetic tunnel junction,MTJ),当电流流过MTJ时它会因为存储信息的不同而表现出不同的阻值。当下的MRAM家族成员包括了三类:自旋转移扭矩 (spin-transfer torque :STT)、自旋轨道扭矩(spin-orbit torque:SOT)、电压控制(VCMA-和 VG-SOT)


FRAM(FRAM,ferroelectric RAM)铁电存储器也是一种特殊工艺的非易失性的存储器,采用人工合成的铅锆钛(PZT)材料形成存储器结晶体存储数据。当一个电场被施加到铁晶体管时,中心原子顺着电场停在低能量位置处,大量中心原子在晶体单胞中移动最终形成极化电荷,然后外界通过判断铁晶体管内的电荷高低来读取数据。与DRAM相比,FRAM在速度与价格方面都具有较大优势。


FRAM 图源 | Objective Analysis
FRAM 图源 | Objective Analysis


值得注意的是,无论是哪种新式存储方式,目前都存在部分局限性。由于存算一体架构在片内计算基本都属于模拟计算,计算精度完全取决于工艺精度,更不能计算浮点运算,因此新式存储方式搭配存算一体架构仅适合应用于需要大规模存储的场景中。此外新式存储往往专注于降低延时与持久储存,往往还不具备Flash、DRAM等成熟工艺的可靠性,还需要继续发展并完善。


总结


随着摩尔定律逼近极限,芯片算力提升已经达到瓶颈,尤其是在需要大规模存储的计算场景中,处理器与内存的数据交换上限逐渐成为新瓶颈。目前存算一体架构搭配延时更低的新存储方式,成为破解“内存墙”的关键。


参考资料:

存算一体/感存算一体芯片技术原理

https://mp.weixin.qq.com/s/SChfWoEWSFoeQSW3kjW17w 

百度百科:PCRAM、FRAM、ReRAM、MRAM

https://baike.baidu.com/item/MRAM/2090077

https://baike.baidu.com/item/PCRAM/280581

基于硅光子的片上光互连技术研究

https://www.docin.com/p-1647619053.html


本文来自微信公众号:与非网eefocus (ID:ee-focus),作者:刘浩然