本文来自微信公众号:半导体行业观察 (ID:icbank),作者:杜芹DQ,题图来自:视觉中国
最近人工智能因为在ChatGPT等自然语言处理器方面的惊人能力而受到更多关注,但除此之外,AI还在其他多个领域慢慢产生影响,譬如将AI用于芯片设计。由于芯片设计复杂度和精度要求的不断提高,传统设计方法已经难以满足需求。人工智能技术的快速发展为芯片设计带来了新的可能性。现在越来越多的芯片产业链的厂商开始探索借助AI的方法来帮助芯片设计,那么芯片工程师该何去何从?
本文将介绍一些芯片巨头利用AI技术在芯片布局中的突破,AI可以在芯片布局中发挥重要作用的原因在于其优异的图像识别能力。
将谷歌的方法与最先进的方法(RePlAce14)以及使用行业标准EDA工具的手动放置进行比较。具体比较的指标有花费的时间、总的面积、功耗、线长等等,对于该表中的所有指标,越低越好。可以看出,谷歌的强化学习方法均优于其他两种。
谷歌的研究团队表示,随着人工智能接触到更多数量和种类的芯片,它可以通过不断地培训学习,会更快更好地为新芯片块生成优化布局,虽然我们主要在谷歌加速器芯片 (TPU) 上生成优化的布局,但我们的方法适用于任何类型ASIC芯片。
在与最先进的全球布局算法家族ePlace/RePlAce的对比中,DREAMPlace在全局布局和合理化方面实现了30倍以上的加速,且没有理论和工业基准的质量下降。更具体地来说,它能使100万个单元的设计在1分钟内就能完成。英伟达探索了用于向前和向后传播的低级操作符的不同实现(前向传播来计算目标,后向传播来计算梯度),以提高整体效率。
此外,DREAMPlace是高度可扩展的,可以通过简单地编写高级编程语言(如Python)来合并新的算法/求解器和新的目标,其工业设计可达1000万个单元。英伟达计划进一步研究单元膨胀的可路由性和时间优化的净加权,以及GPU加速的详细布局。它还可以扩展到利用多GPU平台来进一步加速。由于DREAMPlace分离了高级算法设计符号和低级加速工作,因此它显著降低了开发和维护开销。英伟达的这项工作将为重新审视经典的EDA问题开辟新的方向。
但是,由于其对线长和密度的关注有限,DREAMPlace的布局质量无法与商业工具相比,这使得它很难适用于工业设计流程。为了解决这一问题,英伟达科学家近日的一项研究文章中提出了一种新方法——DREAM-GAN,这是一种使用生成对抗学习推进 DREAMPlace的布局优化框架。DREAM-GAN的最大优势在于,它使DREAMPlace能够朝着工具验证(和优化)的方向优化底层位置,而无需明确了解商业工具的黑盒算法。DREAMPlace通过优化鉴别器的输出,提高了其商业化的位置。
实验表明DREAM GAN不仅在放置阶段立即改善了主要的PPA指标,而且还证明了这些改进一直持续到路由后阶段,在路由后阶段,无线长度提高了8.3%,总功率提高了7.4%。
DREAMPlace与DREAM-GAN在各主要PD阶段的详细PPA比较结果。在这项工作中,我们使用Synopsys ICC2执行整个PD,除了全局放置由DREAMPlace(左列)或DREAM-GAN(右列)执行。在所有商业和OpenCore基准测试中,两种方法在全局布局上的运行时差异不超过2分钟。
此外,Nvidia科学家近日在国际物理设计研讨会上展示了AutoDMP的研究论文,AutoDMP 是使用 TILOS AI 研究所的宏布局基准进行评估的,其中包括带有大量宏的CPU和AI加速器设计。为了进行评估,AutoDMP与商业EDA工具集成在一起,如下图所示。
首先,在NVIDIA DGX系统上运行多目标贝叶斯优化。该系统有4个A100 GPU,每个都配备了80Gb的HBM内存。生成16个并行进程以采样参数并在优化期间运行DREAMPlace。然后,从Pareto前端选择的宏位置被提供给运行在CPU服务器上的TILOS提供的EDA Flow。在大多数设计中,AutoDMP的PPA指标结果——线长、功率、最差负裕量 (WNS)和总负裕量 (TNS)——等于或优于商业流程。
写在最后
技术的发展是把“双刃剑”。一方面,人工智能可以通过学习已有的芯片设计数据来发现规律,并通过分析数据,提供更快速、更准确的芯片设计方案。同时,人工智能技术还可以提高芯片设计的效率,缩短开发时间,减少成本。
但另一方面,随着AI技术的不断发展和成熟,一些没有那么有创意的低级、平凡的工作可能会被人工智能取代。正如上文所述,在芯片布局这项工作中,过往主要是靠人工来完成,虽然目前的AI技术还有一些局限性,但随着技术的不断改进和突破,将或多或少的减少芯片设计过程中对手动方面的需求,虽然这提高了整体效率,但有可能会端掉部分工程师的饭碗。
不过我们也不必焦虑,回看四次工业革命,每一次工业革命都有一些工作、工人或工程师被取代,但是也会创造出新型工程师,最终提升了我们的生产力。回归到芯片设计这一行业,AI的介入不会完全取代人工,因为就实际情况而言,行业仍需要能够在设计过程中准确验证和利用 AI 工具和算法的个人。这一发展对于人才的深远影响是,提高IC设计人员在行业中的价值,使他们腾出更多的时间来专注于更复杂和更具创造性的设计方面,并最终生产出更好的产品。
利用人工智能技术来帮助设计和制造芯片已经成为大势所趋。不仅是谷歌和英伟达,EDA软件工具提供商Synopsys、西门子和Cadence等公司也在其最新工具中使用了AI技术,三星将AI技术引入芯片制造等等。这些AI/ML技术方法的引入,将为推进超大规模集成电路布局提供新的方向,也将成为摩尔定律再运行几年的潜在途径之一。
参考资料
【1】《A graph placement methodology for fast chip design》
【2】《DREAMPlace: Deep Learning Toolkit-Enabled GPU Acceleration for Modern VLSI Placement》
【3】《DREAM-GAN: Advancing DREAMPlace towards Commercial-Quality using Generative Adversarial Learning》
本文来自微信公众号:半导体行业观察 (ID:icbank),作者:杜芹DQ